Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(42): 8535-8547, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37840474

RESUMO

We describe the synthesis of trihydroxylated cyclohexane ß-amino acids from (-)-shikimic acid, in their cis and trans configuration, and the incorporation of the trans isomer into a trans-2-aminocyclohexanecarboxylic acid peptide chain. Subsequently, the hydroxyl groups were partially or totally deprotected. The structural study of the new peptides by FTIR, CD, solution NMR and DFT calculations revealed that they all fold into a 14-helix secondary structure, similarly to the homooligomer of trans-2-aminocyclohexanecarboxylic acid. This means that the high degree of substitution of the cyclohexane ring of the new residue is compatible with the adoption of a stable helical secondary structure and opens opportunities for the design of more elaborate peptidic foldamers with oriented polar substituents at selected positions of the cycloalkane residues.


Assuntos
Aminoácidos , Ácidos Cicloexanocarboxílicos , Aminoácidos/química , Peptídeos/química , Estrutura Secundária de Proteína
2.
Eur J Med Chem ; 258: 115509, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37343464

RESUMO

Acute myeloid leukaemia (AML) is an aggressive type of leukaemia with low rates of long-term survival. While the current standard of care is based on cytotoxic chemotherapy, a promising emerging approach is differentiation therapy. However, most current differentiating agents target specific mutations and are effective only in certain patient subtypes. To identify agents which may be effective in wider population cohorts, we performed a phenotypic screen with the myeloid marker CD11b and identified a compound series that was able to differentiate AML cell lines in vitro regardless of their mutation status. Structure-activity relationship studies revealed that replacing the formamide and catechol methyl ether groups with sulfonamide and indazole respectively improved the in vitro metabolic profile of the series while maintaining the differentiation profile in multiple cell lines. This optimisation exercise enabled progression of a lead compound to in vivo efficacy testing. Our work supports the promise of phenotypic screening to identify novel small molecules that induce differentiation in a wide range of AML subtypes.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular , Diferenciação Celular , Piridinas/farmacologia
3.
J Histochem Cytochem ; 71(6): 301-320, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37350564

RESUMO

Retinal astrocytes are vital for neuronal homeostasis in the retina. Together with Müller glia, they provide retinal cells with neurotrophic factors, antioxidative support, and defense mechanisms such as the formation of the blood-retinal barrier. Substantial heterogeneity of astrocyte morphology and function represents a challenge for identification of distinct subtypes which may be potential targets for therapeutic purposes. Hence, identification of novel markers of astrocyte subpopulations is highly relevant to better understand the molecular mechanisms involved in retinal development, homeostasis, and pathology. In this study, we observed that the cell cycle regulator, p16INK4a, is expressed in immature astrocytes in the mouse retina. Immunohistochemical analysis showed p16INK4a expression in the optic nerve of wild-type mice from 3 days to 3 months of age and in the nerve fiber layer of the adult mouse retina. Colocalization of p16INK4a expression and glial fibrillary acidic protein (immature/mature astrocyte marker) tends to decrease with age. However, colocalization of p16INK4a expression and vimentin (immature astrocyte marker) remains high in the optic nerve from the early postnatal period to adulthood. The observations from this study provide a valuable tool for further investigations of ocular astrocytes in the developing retina as well as in degenerative retinopathies.


Assuntos
Astrócitos , Inibidor p16 de Quinase Dependente de Ciclina , Camundongos , Animais , Astrócitos/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/análise , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neuroglia , Retina/metabolismo , Proteína Glial Fibrilar Ácida/análise , Ciclo Celular
4.
J Org Chem ; 88(13): 8093-8098, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37311064

RESUMO

The synthesis of a range of loline alkaloids is reported. The C(7) and C(7a) stereogenic centers for the targets were formed by the established conjugate addition of lithium (S)-N-benzyl-N-(α-methylbenzyl)amide to tert-butyl 5-benzyloxypent-2-enoate, ensuing enolate oxidation to give an α-hydroxy-ß-amino ester, and then formal exchange of the resultant amino and hydroxyl functionalities (via the intermediacy of the corresponding aziridinium ion) to give an α-amino-ß-hydroxy ester. Subsequent transformation gave a 3-hydroxyprolinal derivative which was converted to the corresponding N-tert-butylsulfinylimine. Mannich-type reaction with the enolate derived from O-Boc protected methyl glycolate then formed the remaining C(1) and C(2) stereogenic centers for the targets. The 2,7-ether bridge was formed by a displacement reaction, completing construction of the loline alkaloid core. Facile manipulations then gave a range of loline alkaloids, including loline itself.


Assuntos
Alcaloides , Alcaloides de Pirrolizidina , Oxirredução , Estereoisomerismo
5.
J Clin Virol ; 155: 105248, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952426

RESUMO

Background The COVID-19 pandemic continues to devastate communities all over the world. The aim of this study was to evaluate the efficacy and safety of the test agent as a prophylaxis against SARS-CoV-2 infection in a population of high-risk healthcare workers. Methods The study was a multi-centre, prospective, double blind, randomized, placebo-controlled trial. Key eligibility criteria included absence of significant co-morbidity and no previous SARS-CoV-2 infection or vaccination. Participants were randomised to either the active agent nasal spray or placebo using computer generated random number tables. The nasal spray was administered 3 times daily over a 45 day course. The primary end point was the percentage of subjects who tested positive for IgGS (anti-spike, immunoglobulin G specific to the spike protein of SARS-CoV-2) at day 45. Results Between 16th April 2021 and 26th July 2021, 556 participants were analysed for the primary endpoint (275 Test; 281 Placebo). The test agent significantly reduced SARS-CoV-2 infection compared to placebo [36 cases (13.1%) Vs 97 cases (34.5%); OR 0.29 (95% CI; 0.18-0.45), p < 0.0001]. Fewer clinical symptoms were also seen in the test group [57 cases (17.6%) vs 112 cases (34.6%); OR 0.40, (95% CI; 0.27-0.59), p < 0.0001]. No harmful effects were associated with taking the test agent. Conclusion The test agent significantly reduced SARS-CoV-2 infection in healthcare workers, with 62% fewer infections when compared to placebo. It was found to be safe and well tolerated and offers a novel treatment option for prophylaxis against SARS-CoV-2 infection.


Assuntos
COVID-19 , COVID-19/prevenção & controle , Humanos , Sprays Nasais , Pandemias/prevenção & controle , Estudos Prospectivos , SARS-CoV-2
6.
iScience ; 25(8): 104787, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35992086

RESUMO

Despite much progress in developing better drugs, many patients with acute myeloid leukemia (AML) still die within a year of diagnosis. This is partly because it is difficult to identify therapeutic targets that are effective across multiple AML subtypes. One common factor across AML subtypes is the presence of a block in differentiation. Overcoming this block should allow for the identification of therapies that are not dependent on a specific mutation for their efficacy. Here, we used a phenotypic screen to identify compounds that stimulate differentiation in genetically diverse AML cell lines. Lead compounds were shown to decrease tumor burden and to increase survival in vivo. Using multiple complementary target deconvolution approaches, these compounds were revealed to be anti-mitotic tubulin disruptors that cause differentiation by inducing a G2-M mitotic arrest. Together, these results reveal a function for tubulin disruptors in causing differentiation of AML cells.

7.
J Nat Prod ; 85(7): 1872-1879, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35771599

RESUMO

The first asymmetric synthesis of microgrewiapine C, a piperidine alkaloid isolated from Microcos paniculata, is reported. This synthesis prompted correction of the 1H and 13C NMR data for the natural sample of the alkaloid, which was achieved by reanalysis of the original spectra. The corrected data for the natural product were found to be identical to those of the synthetic sample prepared herein, thus confirming the structural and relative configurational assignment of microgrewiapine C. Although comparison of specific rotation values indicates that the (1R,2S,3S,6S) absolute configuration should be assigned to the alkaloid, consideration of potential common biosynthetic origins of microgrewiapine C and congeners suggests that further phytochemical investigations are warranted.


Assuntos
Alcaloides , Malvaceae , Alcaloides/química , Malvaceae/química , Estrutura Molecular , Piperidinas/química , Estereoisomerismo
8.
Bioorg Med Chem ; 69: 116812, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772287

RESUMO

A therapeutic approach that holds the potential to treat all Duchenne muscular dystrophy (DMD) patient populations is utrophin modulation. Ezutromid, a first generation utrophin modulator which was later found to act via antagonism of the arylhydrocarbon receptor, progressed to Phase 2 clinical trials. Although interim data showed target engagement and functional improvements, ezutromid ultimately failed to meet its clinical endpoints. We recently described the identification of a new class of hydrazide utrophin modulators which has a different mechanism of action to ezutromid. In this study we report our early optimisation studies on this hydrazide series. The new analogues had significantly improved potency in cell-based assays, increased sp3 character and reduced lipophilicity, which also improved their physicochemical properties. A representative new analogue combining these attributes increased utrophin protein in dystrophic mouse cells showing it can be used as a chemical tool to reveal new insights regarding utrophin upregulation as a strategy for DMD therapeutic intervention.


Assuntos
Distrofia Muscular de Duchenne , Animais , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Camundongos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Relação Estrutura-Atividade , Regulação para Cima , Utrofina/genética , Utrofina/metabolismo , Utrofina/uso terapêutico
9.
J Nat Prod ; 85(1): 306-312, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34918520

RESUMO

The formation of O-acetyl microgrewiapine A is investigated. NMR data for the authentic sample derived from the natural product are corrected. Wholly synthetic samples, produced from reductive N-methylation of synthetic microcosamine A (to give synthetic microgrewiapine A) followed by O-acetylation, exhibit NMR data that are identical to those of the authentic sample. The previous report that this two-step transformation proceeds with epimerization at C-6 is thus shown to be in error: the purported sample of O-acetyl 6-epi-microgrewiapine A is structurally misassigned and is, in fact, O-acetyl microgrewiapine A. A plausible rationale for the structural misassignment is advanced.


Assuntos
Alcaloides/química , Piperidinas/química , Acetilação , Alcaloides/síntese química , Produtos Biológicos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Metilação , Estrutura Molecular , Piperidinas/síntese química , Espectroscopia de Prótons por Ressonância Magnética
10.
Molecules ; 26(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771052

RESUMO

Acute myeloid leukemia (AML) is the most aggressive type of blood cancer, and there is a continued need for new treatments that are well tolerated and improve long-term survival rates in patients. Induction of differentiation has emerged as a promising alternative to conventional cytotoxic chemotherapy, but known agents lack efficacy in genetically distinct patient populations. Previously, we established a phenotypic screen to identify small molecules that could stimulate differentiation in a range of AML cell lines. Utilising this strategy, a 1,5-dihydrobenzo[e][1,4]oxazepin-2(3H)-one hit compound was identified. Herein, we report the hit validation in vitro, structure-activity relationship (SAR) studies and the pharmacokinetic profiles for selected compounds.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda , Estrutura Molecular , Relação Estrutura-Atividade
11.
J Med Chem ; 64(21): 15608-15628, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34672555

RESUMO

Induction of differentiation is a promising therapeutic strategy against acute myeloid leukemia. However, current differentiation therapies are effective only to specific patient populations. To identify novel differentiation agents with wider efficacy, we developed a phenotypic high-throughput screen with a range of genetically diverse cell lines. From the resulting hits, one chemical scaffold was optimized in terms of activity and physicochemical properties to yield OXS007417, a proof-of-concept tool compound, which was also able to decrease tumor volume in a murine in vivo xenograft model.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Fenótipo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Eur J Med Chem ; 220: 113431, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33915371

RESUMO

Duchenne muscular dystrophy is a fatal disease with no cure, caused by lack of the cytoskeletal protein dystrophin. Upregulation of utrophin, a dystrophin paralogue, offers a potential therapy independent of mutation type. The failure of first-in-class utrophin modulator ezutromid/SMT C1100 in Phase II clinical trials necessitates development of compounds with better efficacy, physicochemical and ADME properties and/or complementary mechanisms. We have discovered and performed a preliminary optimisation of a novel class of utrophin modulators using an improved phenotypic screen, where reporter expression is derived from the full genomic context of the utrophin promoter. We further demonstrate through target deconvolution studies, including expression analysis and chemical proteomics, that this compound series operates via a novel mechanism of action, distinct from that of ezutromid.


Assuntos
Descoberta de Drogas , Hidrazinas/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Pirimidinas/farmacologia , Utrofina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Estrutura Molecular , Distrofia Muscular de Duchenne/metabolismo , Pirimidinas/síntese química , Pirimidinas/química , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade
13.
Org Biomol Chem ; 19(13): 2847-2855, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33720232

RESUMO

Enantiorecognition between a racemic reagent and a racemic substrate can be a valuable process in organic synthesis. This review highlights representative examples of this phenomenon and the use of mutual kinetic resolution as a method for screening of kinetic and/or parallel kinetic resolutions.


Assuntos
Indicadores e Reagentes/química , Compostos Orgânicos/síntese química , Cinética , Estrutura Molecular , Compostos Orgânicos/química , Estereoisomerismo
14.
ACS Med Chem Lett ; 11(12): 2421-2427, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33335663

RESUMO

Utrophin modulation is a disease-modifying therapeutic strategy for Duchenne muscular dystrophy that would be applicable to all patient populations. To improve the suboptimal profile of ezutromid, the first-in-class clinical candidate, a second generation of utrophin modulators bearing a phosphinate ester moiety was developed. This modification significantly improved the physicochemical and ADME properties, but one of the main lead molecules was found to have dose-limiting hepatotoxicity. In this work we describe how less lipophilic analogues retained utrophin modulatory activity in a reporter gene assay, upregulated utrophin protein in dystrophic mouse muscle cells, but also had improved physicochemical and ADME properties. Notably, ClogP was found to directly correlate with pIC50 in HepG2 cells, hence leading to a potentially safer toxicological profiles in this series. Compound 21 showed a balanced profile (H2K EC50: 4.17 µM, solubility: 477 µM, mouse hepatocyte T 1/2 > 240 min) and increased utrophin protein 1.6-fold in a Western blot assay.

15.
Bioorg Med Chem ; 28(22): 115724, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33128909

RESUMO

We have previously reported the discovery of a series of rhodanine-based inhibitors of the PIM family of serine/threonine kinases. Here we described the optimisation of those compounds to improve their physicochemical and ADME properties as well as reducing their off-targets activities against other kinases. Through molecular modeling and systematic structure activity relationship (SAR) studies, advanced molecules with high inhibitory potency, reduced off-target activity and minimal efflux were identified as new pan-PIM inhibitors. One example of an early lead, OX01401, was found to inhibit PIMs with nanomolar potency (15 nM for PIM1), inhibit proliferation of two PIM-expressing leukaemic cancer cell lines, MV4-11 and K562, and to reduce intracellular phosphorylation of a PIM substrate in a concentration dependent manner.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Tiazóis/farmacologia , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
16.
Tetrahedron ; 76(2): 130819, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32713969

RESUMO

Following on from ezutromid, the first-in-class benzoxazole utrophin modulator that progressed to Phase 2 clinical trials for the treatment of Duchenne muscular dystrophy, a new chemotype was designed to optimise its physicochemical and ADME profile. Herein we report the synthesis of SMT022357, a second generation utrophin modulator preclinical candidate, and an asymmetric synthesis of its constituent enantiomers. The pharmacological properties of both enantiomers were evaluated in vitro and in vivo. No significant difference in the activity or efficacy was observed between the two enantiomers; activity was found to be comparable to the racemic mixture.

17.
J Med Chem ; 63(14): 7880-7891, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32551645

RESUMO

Utrophin modulation is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD), which should be applicable to all patient populations. Following on from ezutromid, the first-generation utrophin modulator, we describe the development of a second generation of utrophin modulators, based on the bioisosteric replacement of the sulfone group with a phosphinate ester and substitution of the metabolically labile naphthalene with a haloaryl substituent. The improved physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties, further reflected in the enhanced pharmacokinetic profile of the most advanced compounds, 30 and 27, led to significantly better in vivo exposure compared to ezutromid and alleviation of the dystrophic phenotype in mdx mice. While 30 was found to have dose-limiting hepatotoxicity, 27 and its enantiomers exhibited limited off-target effects, resulting in a safe profile and highlighting their potential utility as next-generation utrophin modulators suitable for progression toward a future DMD therapy.


Assuntos
Benzoxazóis/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Utrofina/metabolismo , Animais , Benzoxazóis/síntese química , Benzoxazóis/farmacocinética , Benzoxazóis/toxicidade , Escherichia coli/efeitos dos fármacos , Camundongos Endogâmicos mdx , Estrutura Molecular , Distrofia Muscular de Duchenne/metabolismo , Testes de Mutagenicidade , Ratos , Salmonella typhimurium/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade , Regulação para Cima/efeitos dos fármacos
18.
J Ocul Pharmacol Ther ; 36(4): 257-266, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32027217

RESUMO

Purpose: Age-related macular degeneration leads to retinal pigment epithelium (RPE) cell death and loss of central vision. In vivo studies have shown that the RPE layer has an innate, but limited, ability to repopulate atrophic areas. We aimed to establish a semiautomated, in vitro, wound healing assay workflow for targeted screening of compounds able to influence RPE wound healing. Methods: The ARPE-19 phenotype was evaluated using bright-field microscopy, immunocytochemistry, and quantitative real-time polymerase chain reaction. ARPE-19 monolayers were simultaneously scratched in a 96-well format and treated with Hoechst-33342 and an array of compounds. Initial wound dimensions and wound healing were subsequently evaluated using the EVOS FL Auto 2.0 imaging platform combined with automated image analyses. Results: Long-term cultured ARPE-19 cells displayed a more in vivo RPE-like phenotype compared with recently seeded or short-term cultured cells. No statistical difference of initial scratch width was observed between short-term and long-term cultured cells, but more wells were excluded from analyses in total in the latter case due to scratch width, scratch smoothness, and imaging errors. Furthermore, the previous time spent in continuous culture had an effect on the observation of an altered wound healing response to different treatment conditions. Conclusions: We have established a semiautomated, 96-well format, in vitro wound healing assay with a reproducible workflow. This would enable screening of a significant number of compounds and greatly advances the potential of identifying novel therapeutics that may enhance the innate ability of RPE cells to repopulate atrophic areas.


Assuntos
Células Epiteliais/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , Cicatrização/genética , Animais , Células Cultivadas/metabolismo , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Humanos , Imuno-Histoquímica , Técnicas In Vitro/métodos , Degeneração Macular/complicações , Degeneração Macular/patologia , Camundongos , Microscopia/métodos , Modelos Animais , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/fisiologia , Epitélio Pigmentado da Retina/ultraestrutura , Cicatrização/imunologia , Cicatrização/fisiologia
19.
J Med Chem ; 63(5): 2547-2556, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31599580

RESUMO

5-(Ethylsulfonyl)-2-(naphthalen-2-yl)benzo[d]oxazole (ezutromid, 1) is a first-in-class utrophin modulator that has been evaluated in a phase 2 clinical study for the treatment of Duchenne muscular dystrophy (DMD). Ezutromid was found to undergo hepatic oxidation of its 2-naphthyl substituent to produce two regioisomeric 1,2-dihydronaphthalene-1,2-diols, DHD1 and DHD3, as the major metabolites after oral administration in humans and rodents. In many patients, plasma levels of the DHD metabolites were found to exceed those of ezutromid. Herein, we describe the structural elucidation of the main metabolites of ezutromid, the regio- and relative stereochemical assignments of DHD1 and DHD3, their de novo chemical synthesis, and their production in systems in vitro. We further elucidate the likely metabolic pathway and CYP isoforms responsible for DHD1 and DHD3 production and characterize their physicochemical, ADME, and pharmacological properties and their preliminary toxicological profiles.


Assuntos
Benzoxazóis/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Naftalenos/metabolismo , Naftóis/metabolismo , Utrofina/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Benzoxazóis/efeitos adversos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Redes e Vias Metabólicas , Metaboloma , Camundongos , Distrofia Muscular de Duchenne/metabolismo , Naftalenos/efeitos adversos , Naftóis/efeitos adversos , Naftóis/análise , Naftóis/síntese química , Ratos , Estereoisomerismo
20.
Angew Chem Int Ed Engl ; 59(6): 2420-2428, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31755636

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease arising from mutations in the dystrophin gene. Upregulation of utrophin to compensate for the missing dystrophin offers a potential therapy independent of patient genotype. The first-in-class utrophin modulator ezutromid/SMT C1100 was developed from a phenotypic screen through to a Phase 2 clinical trial. Promising efficacy and evidence of target engagement was observed in DMD patients after 24 weeks of treatment, however trial endpoints were not met after 48 weeks. The objective of this study was to understand the mechanism of action of ezutromid which could explain the lack of sustained efficacy and help development of new generations of utrophin modulators. Using chemical proteomics and phenotypic profiling we show that the aryl hydrocarbon receptor (AhR) is a target of ezutromid. Several lines of evidence demonstrate that ezutromid binds AhR with an apparent KD of 50 nm and behaves as an AhR antagonist. Furthermore, other reported AhR antagonists also upregulate utrophin, showing that this pathway, which is currently being explored in other clinical applications including oncology and rheumatoid arthritis, could also be exploited in future DMD therapies.


Assuntos
Benzoxazóis/química , Naftalenos/química , Proteômica/métodos , Receptores de Hidrocarboneto Arílico/metabolismo , Utrofina/metabolismo , Animais , Benzoxazóis/metabolismo , Benzoxazóis/farmacologia , Benzoxazóis/uso terapêutico , Reação de Cicloadição , Desenho de Fármacos , Humanos , Cinética , Camundongos , Sondas Moleculares/química , Distrofia Muscular de Duchenne/tratamento farmacológico , Mioblastos/citologia , Mioblastos/metabolismo , Naftalenos/metabolismo , Naftalenos/farmacologia , Naftalenos/uso terapêutico , Ligação Proteica , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Regulação para Cima/efeitos dos fármacos , Utrofina/agonistas , Utrofina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...